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When are injective polynomial maps surjective?



Simple cases

Finite fields
Any injective map from a finite set to itself is surjective.

Algebraic closure of finite fields
Suppose f : (Falg

p )n → (Falg
p )n is an injective polynomial function

with coefficients a and let b ∈ (Falg
p )n be outside its range.

Since (Falg
p ) is locally finite, the subfield k generated by a, b is

finite and f |kn is surjective.
This contradicts the assumption on b so f must be surjective as
well.

What about polynomial maps f : Cn → Cn?
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Syntax

Definition (Language L)

A set of function symbols, relation symbols, and constant symbols
each with a specified ‘arity’ (number of arguments)

Definition (L-formula)

Well-formed string of symbols from the language along with
=,¬,∨,∧,∃,∀ and variable symbols. If all variables are bound, it
is an L-sentence.

Definition (T ` φ)

A set T of L-sentences proves an L-sentence φ if there are a
sequence of statements connected by a proof system. Usually
Modus Ponens
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Semantics

Definition (L-Structure M)

An underlying set M, a function f M : Mn → M for each n-ary
function symbol f , a relation RM ⊂ Mn for each n-ary relation
symbol R, and an element cM for each constant symbol c .

Definition (M |= T )

An L-structure, M models a set T of L-sentences if the M
interpretation of each sentence is true in the structure.

Definition (T |= φ)

φ is true in every model of T
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Example

Lr = {+,−, ·, 0, 1} is the language of rings (no relation symbols)
Z = (Z,+,−, ·, 0, 1) is an Lr -structure.
The ring axioms are a set of Lr -sentences
Z is a model of the ring axioms
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Two Big Theorems of Model Theory

Theorem (Completeness Theorem)

T ` φ if and only if T |= φ

Theorem (Compactness Theorem)

If T |= φ then there is a finite subset ∆ ⊂ T such that ∆ |= φ.



Two Big Theorems of Model Theory

Theorem (Completeness Theorem)

T ` φ if and only if T |= φ

Theorem (Compactness Theorem)

If T |= φ then there is a finite subset ∆ ⊂ T such that ∆ |= φ.



Two Big Theorems of Model Theory

Theorem (Completeness Theorem)

T ` φ if and only if T |= φ

Theorem (Compactness Theorem)

If T |= φ then there is a finite subset ∆ ⊂ T such that ∆ |= φ.



Application to Algebraically Closed Fields

ACFp is the set of axioms for Algebraically Closed Fields with
characteristic p as Lr -sentences.

ACFp is complete for p = 0 or prime p: ACFp |= φ or ACFp |= ¬φ
for all Lr -sentences φ. Can be proved using Vaught’s test or
Quantifier Elimination.
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Back to Injective Polynomials

There is an Lr sentence Φn,d such that K |= Φn,d iff every
injective degree d polynomial map from Kn → Kn is surjective.

Suppose there is a counterexample in C (ACF0 6|= Φn,d). By
completeness ACF0 |= ¬Φn,d .

By the compactness theorem there is a finite subset ∆ ⊂ ACF0
such that ∆ ` ¬Φn,d .

∆ will contain some of the axioms for an algebraically closed field
and some of the axioms for characteristic 0, so for large enough p,
ACFp |= ∆.

In particular, ACFp |= ¬Φn,d which is a contradiction since we’ve

already shown that Falg
p |= Φn,d .
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Main Result

Theorem (Ax’s Theorem)

All injective polynomial maps f : Cn → Cn are surjective


