Ax's Theorem with Model Theory Cornell DRP Spring 2021

> Felix Roz fr247@cornell.edu

> > Mentor: Yibo Ji

May 28, 2021

When are injective polynomial maps surjective?

Finite fields

Any injective map from a finite set to itself is surjective.

Finite fields

Any injective map from a finite set to itself is surjective.

Algebraic closure of finite fields

Suppose $f : (\mathbb{F}_p^{a/g})^n \to (\mathbb{F}_p^{a/g})^n$ is an injective polynomial function with coefficients *a* and let $b \in (\mathbb{F}_p^{a/g})^n$ be outside its range.

Finite fields

Any injective map from a finite set to itself is surjective.

Algebraic closure of finite fields

Suppose $f : (\mathbb{F}_p^{a/g})^n \to (\mathbb{F}_p^{a/g})^n$ is an injective polynomial function with coefficients *a* and let $b \in (\mathbb{F}_p^{a/g})^n$ be outside its range. Since $(\mathbb{F}_p^{a/g})$ is locally finite, the subfield *k* generated by *a*, *b* is finite and $f|_{k^n}$ is surjective.

Finite fields

Any injective map from a finite set to itself is surjective.

Algebraic closure of finite fields

Suppose $f : (\mathbb{F}_p^{a/g})^n \to (\mathbb{F}_p^{a/g})^n$ is an injective polynomial function with coefficients *a* and let $b \in (\mathbb{F}_p^{a/g})^n$ be outside its range. Since $(\mathbb{F}_p^{a/g})$ is locally finite, the subfield *k* generated by *a*, *b* is finite and $f|_{k^n}$ is surjective.

This contradicts the assumption on b so f must be surjective as well.

Finite fields

Any injective map from a finite set to itself is surjective.

Algebraic closure of finite fields

Suppose $f : (\mathbb{F}_p^{a/g})^n \to (\mathbb{F}_p^{a/g})^n$ is an injective polynomial function with coefficients *a* and let $b \in (\mathbb{F}_p^{a/g})^n$ be outside its range. Since $(\mathbb{F}_p^{a/g})$ is locally finite, the subfield *k* generated by *a*, *b* is finite and $f|_{k^n}$ is surjective.

This contradicts the assumption on b so f must be surjective as well.

What about polynomial maps $f : \mathbb{C}^n \to \mathbb{C}^n$?

Definition (Language \mathcal{L})

A set of function symbols, relation symbols, and constant symbols each with a specified 'arity' (number of arguments)

Definition (Language \mathcal{L})

A set of function symbols, relation symbols, and constant symbols each with a specified 'arity' (number of arguments)

Definition (\mathcal{L} -formula)

Well-formed string of symbols from the language along with $=, \neg, \lor, \land, \exists, \forall$ and variable symbols. If all variables are bound, it is an \mathcal{L} -sentence.

Definition (Language \mathcal{L})

A set of function symbols, relation symbols, and constant symbols each with a specified 'arity' (number of arguments)

Definition (\mathcal{L} -formula)

Well-formed string of symbols from the language along with $=, \neg, \lor, \land, \exists, \forall$ and variable symbols. If all variables are bound, it is an \mathcal{L} -sentence.

Definition $(T \vdash \phi)$

A set T of L-sentences proves an L-sentence ϕ if there are a sequence of statements connected by a proof system. Usually Modus Ponens

Definition (\mathcal{L} -Structure \mathcal{M})

An underlying set M, a function $f^{\mathcal{M}}: M^n \to M$ for each *n*-ary function symbol f, a relation $R^{\mathcal{M}} \subset M^n$ for each *n*-ary relation symbol R, and an element $c^{\mathcal{M}}$ for each constant symbol c.

Definition (\mathcal{L} -Structure \mathcal{M})

An underlying set M, a function $f^{\mathcal{M}}: M^n \to M$ for each *n*-ary function symbol f, a relation $R^{\mathcal{M}} \subset M^n$ for each *n*-ary relation symbol R, and an element $c^{\mathcal{M}}$ for each constant symbol c.

Definition $(\mathcal{M} \models T)$

An \mathcal{L} -structure, \mathcal{M} models a set \mathcal{T} of \mathcal{L} -sentences if the \mathcal{M} interpretation of each sentence is true in the structure.

Definition (\mathcal{L} -Structure \mathcal{M})

An underlying set M, a function $f^{\mathcal{M}}: M^n \to M$ for each *n*-ary function symbol f, a relation $R^{\mathcal{M}} \subset M^n$ for each *n*-ary relation symbol R, and an element $c^{\mathcal{M}}$ for each constant symbol c.

Definition $(\mathcal{M} \models T)$

An \mathcal{L} -structure, \mathcal{M} models a set \mathcal{T} of \mathcal{L} -sentences if the \mathcal{M} interpretation of each sentence is true in the structure.

Definition $(T \models \phi)$

 ϕ is true in every model of ${\cal T}$

Example

Example

 $\mathcal{L}_r = \{+, -, \cdot, 0, 1\}$ is the language of rings (no relation symbols) $Z = (\mathbb{Z}, +, -, \cdot, 0, 1)$ is an \mathcal{L}_r -structure. The ring axioms are a set of \mathcal{L}_r -sentences Z is a model of the ring axioms Two Big Theorems of Model Theory

Two Big Theorems of Model Theory

Theorem (Completeness Theorem) $T \vdash \phi$ if and only if $T \models \phi$

Two Big Theorems of Model Theory

Theorem (Completeness Theorem) $T \vdash \phi$ if and only if $T \models \phi$ Theorem (Compactness Theorem)

If $T \models \phi$ then there is a finite subset $\Delta \subset T$ such that $\Delta \models \phi$.

Application to Algebraically Closed Fields

Application to Algebraically Closed Fields

 ACF_p is the set of axioms for Algebraically Closed Fields with characteristic p as \mathcal{L}_r -sentences.

Application to Algebraically Closed Fields

 ACF_p is the set of axioms for Algebraically Closed Fields with characteristic p as \mathcal{L}_r -sentences.

 ACF_p is **complete** for p = 0 or prime p: $ACF_p \models \phi$ or $ACF_p \models \neg \phi$ for all \mathcal{L}_r -sentences ϕ . Can be proved using Vaught's test or Quantifier Elimination.

There is an \mathcal{L}_r sentence $\Phi_{n,d}$ such that $K \models \Phi_{n,d}$ iff every injective degree d polynomial map from $K^n \to K^n$ is surjective.

There is an \mathcal{L}_r sentence $\Phi_{n,d}$ such that $K \models \Phi_{n,d}$ iff every injective degree d polynomial map from $K^n \to K^n$ is surjective.

Suppose there is a counterexample in \mathbb{C} ($ACF_0 \not\models \Phi_{n,d}$). By completeness $ACF_0 \models \neg \Phi_{n,d}$.

There is an \mathcal{L}_r sentence $\Phi_{n,d}$ such that $K \models \Phi_{n,d}$ iff every injective degree d polynomial map from $K^n \to K^n$ is surjective.

Suppose there is a counterexample in \mathbb{C} ($ACF_0 \not\models \Phi_{n,d}$). By completeness $ACF_0 \models \neg \Phi_{n,d}$.

By the compactness theorem there is a finite subset $\Delta \subset ACF_0$ such that $\Delta \vdash \neg \Phi_{n,d}$.

There is an \mathcal{L}_r sentence $\Phi_{n,d}$ such that $K \models \Phi_{n,d}$ iff every injective degree d polynomial map from $K^n \to K^n$ is surjective.

Suppose there is a counterexample in \mathbb{C} ($ACF_0 \not\models \Phi_{n,d}$). By completeness $ACF_0 \models \neg \Phi_{n,d}$.

By the compactness theorem there is a finite subset $\Delta \subset ACF_0$ such that $\Delta \vdash \neg \Phi_{n,d}$.

 Δ will contain some of the axioms for an algebraically closed field and some of the axioms for characteristic 0, so for large enough *p*, $ACF_p \models \Delta$.

There is an \mathcal{L}_r sentence $\Phi_{n,d}$ such that $K \models \Phi_{n,d}$ iff every injective degree d polynomial map from $K^n \to K^n$ is surjective.

Suppose there is a counterexample in \mathbb{C} ($ACF_0 \not\models \Phi_{n,d}$). By completeness $ACF_0 \models \neg \Phi_{n,d}$.

By the compactness theorem there is a finite subset $\Delta \subset ACF_0$ such that $\Delta \vdash \neg \Phi_{n,d}$.

 Δ will contain some of the axioms for an algebraically closed field and some of the axioms for characteristic 0, so for large enough *p*, $ACF_p \models \Delta$.

In particular, $ACF_p \models \neg \Phi_{n,d}$ which is a contradiction since we've already shown that $\mathbb{F}_p^{alg} \models \Phi_{n,d}$.

Main Result

Theorem (Ax's Theorem) All injective polynomial maps $f : \mathbb{C}^n \to \mathbb{C}^n$ are surjective